Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Paulina R. Martínez-Alanis, Rubén A. Toscano and Ivan Castillo*

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, México, DF 04510, Mexico

Correspondence e-mail:
joseivan@servidor.unam.mx

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{S}-\mathrm{C})=0.003 \AA$
R factor $=0.026$
$w R$ factor $=0.067$
Data-to-parameter ratio $=19.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexakis(dimethyl sufoxide- κ O)iron(III) tribromide

The title compound, $\left[\mathrm{Fe}\left\{\mathrm{OS}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{6}\right] \mathrm{Br}_{3}$, is isostructural with [$\left.\mathrm{Fe}\left\{\mathrm{OS}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{6}\right]\left(\mathrm{NO}_{3}\right)_{3}$ [Tzou, Mullaney, Normand \& Chang (1995), Acta Cryst. C51, 2249-2252]. The Fe ${ }^{\text {III }}$ centre in the cation occupies a crystallographic $\overline{3}$ site and has a distorted octahedral coordination, with an $\mathrm{Fe}-\mathrm{O}$ distance of 2.000 (2) \AA and $\mathrm{O}-\mathrm{Fe}-\mathrm{O}$ angles of 92.01 (7) and $87.99(7)^{\circ}$.

Comment

The structure of the title compound, (I), comprises discrete $\left[\mathrm{Fe}(\mathrm{DMSO})_{6}\right]^{3+}\left[\mathrm{DMSO}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}\right.$, dimethyl sulfoxide] cations and bromide anions. The closest $\mathrm{Fe} \cdots \mathrm{Br} 1$ contact is 5.525 (3) \AA, indicating that there are no significant interactions between the Fe and Br atoms (Fig. 1). The $\mathrm{Fe}-\mathrm{O}$ distance of 2.000 (2) \AA differs significantly from the value reported for the nitrate analogue at $2.020 \AA$ (Tzou et al., 1995), but compares well with those of trans- $\left[\mathrm{FeCl}_{2}(\mathrm{DMSO})_{4}\right]\left[\mathrm{FeCl}_{4}\right]$ at $2.006 \AA$ (Bennett et al., 1967) and $\left[\mathrm{FeCl}(\mathrm{DMSO})_{5}\right]\left[\mathrm{Fe}_{2} \mathrm{Cl}_{6} \mathrm{O}\right]$ at $1.998 \AA$ (Ponomarev et al., 1984). As expected, the observed $\mathrm{Fe}-\mathrm{O}$ distance is shorter than the distances found in the $\left[\mathrm{Fe}(\mathrm{DMSO})_{6}\right]^{2+}$ cation, which have an average of 2.128 (3) \AA (Müller et al., 1989), owing to the higher oxidation state in the former compound.

(I)

The coordination polyhedron around the Fe atom is a distorted octahedron flattened in the direction of the threefold axis with the two axial O_{3} faces $[\mathrm{O} 1, \mathrm{O} 1 B(-y, x-y, z)$, $O 1 D(-x+y,-x, z)$ and $\mathrm{O} 1 A(-x,-y,-z), \mathrm{O} 1 C(y,-x+y$, $-z$) and $\mathrm{O} 1 \mathrm{E}(x-y, x,-z)$] having longer [2.878 (3) A] $\mathrm{O} \cdots \mathrm{O}$ than the remaining edges in the equatorial region [2.778 (3) A $]$. The $\mathrm{S} 1-\mathrm{O} 1$ distance of 1.543 (2) \AA clearly shows the loss of $\mathrm{S}=\mathrm{O}$ double-bond character upon coordination via the O atom. The $\mathrm{S}-\mathrm{O}$ vector lies nearly perpendicular to the O_{3} faces (angle between the $\mathrm{S}-\mathrm{O}$ vector and the

Received 7 September 2005 Accepted 27 September 2005 Online 30 September 2005

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 40% probability level.
vector normal to the O_{3} plane: 2.8°). As found in the nitrate analogues of Fe (Tzou et al., 1995) and Cr (Öhrström \& Svensson, 2000), the bromide anion Br 1 resides on a site of 3 symmetry, and Br 2 resides on a site of $\overline{3}$ symmetry. This structure, however, does not have the disorder problems associated with one of the nitrate anions in the aforementioned analogues. There are two Br 1 and one Br 2 anions for each cation.

Experimental

Anhydrous iron(II) bromide ($0.35 \mathrm{~g}, 1.62 \mathrm{mmol}$) was dissolved in DMSO (10 ml) while stirring with a magnetic bar. Air oxidation to iron(III) resulted in a yellow solution, which was stirred overnight. The reaction mixture was then filtered and left standing for the DMSO to evaporate, when yellow crystals of (I) were obtained [yield: $0.53 \mathrm{~g}, 43 \%$; m.p. $436-437 \mathrm{~K}$ (decomposition)]. IR $\left(\mathrm{CHCl}_{3}\right)$: 2986, 2918, 2466, 1624, 1493, 1434, 1414, 1403, 1309, 1289, 1237, 1053, 1014, 984, $948,925,891 \mathrm{~cm}^{-1}$; UV-Vis $415,291,245 \mathrm{~nm}$.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{6}\right] \cdot 3 \mathrm{Br}^{-}$
$M_{r}=764.35$
Hexagonal, $R \overline{3}$
$a=10.528(7) \AA$
$c=22.281(3) \AA$
$V=2231.0(4) \AA^{3}$
$Z=3$
$D_{x}=1.707 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX CCD diffractometer ω scans

Mo $K \alpha$ radiation
Cell parameters from 2896 reflections
$\theta=2.4-24.9^{\circ}$
$\mu=4.98 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Prism, yellow
$0.25 \times 0.25 \times 0.22 \mathrm{~mm}$

Absorption correction: analytical (Bruker, 1999)
$T_{\text {min }}=0.339, T_{\text {max }}=0.414$ 6099 measured reflections

Figure 2
Crystal packing diagram of (I), viewed along the c axis. Fe, S and C atoms are depicted as ellipsoids, and the O atoms define the polyhedra around Fe .

879 independent reflections	$h=-12 \rightarrow 12$
702 reflections with $I>2 \sigma(I)$	$k=-12 \rightarrow 12$
$R_{\text {int }}=0.044$	$l=-26 \rightarrow 26$

$R_{\text {int }}=0.044$
$l=-26 \rightarrow 26$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.037 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$w R\left(F^{2}\right)=0.067$
$(\Delta / \sigma)_{\text {max }}<0.001$
$S=0.99$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}^{(\Delta / \sigma} \AA^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

The positional parameters of the H atoms were calculated geometrically, and they were refined as riding, with a fixed $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ and $\mathrm{C}-\mathrm{H}=0.96 \AA$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

IC and PRMA thank DGAPA-UNAM for financial support (Proyecto IN247402).

References

Bennett, M. J., Cotton, F. A. \& Weaver, D. L. (1967). Acta Cryst. 23, 581-586. Bruker (1999). SMART (Version 5.625), SAINT-Plus (Version 6.23C) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Müller, A., Bögge, H, Schimanski, U., Penk, M., Nieradzik, K., Dartmann, M., Krickemeyer, E., Schimanski, J., Römer, C., Römer, M., Dornfeld, H., Wienböker, U., Hellman, W. \& Zimmermann, M. (1989). Monatsh. Chem. 120, 367-391.
Öhrström, L. \& Svensson, G.(2000). Inorg. Chim. Acta, 305, 157-162.
Ponomarev, V. I., Arutyunyan, L. D. \& Atomyan, L. O. (1984). Sov. Phys. Crystallogr. 29, 538-544; English translation of Kistallografiya, 29, 910-922.
Tzou, J. R., Mullaney, M., Norman, R. E. \& Chang, S. C. (1995). Acta Cryst. C51, 2249-2252.

